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Abstract—This paper addresses the problem of position esti-
mation based on single pseudo-range measurements. An acoustic
positioning system for an autonomous underwater vehicle (AUV)
is considered. A one-way travel-time (OWTT) setting with an
offset between the emitting and receiving clocks is assumed. Two
cases are considered: one with known vehicle velocity and one
where the velocity is only given in relation to the velocity of
the surrounding fluid. Continuous-discrete filters are designed
to obtain the desired estimates. In the first case, position and
bias estimates are obtained with three different solutions: the
extended Kalman filter (EKF), the unscented Kalman filter
(UKF), and a linear Kalman filter (LKF) with an augmented
state. The performances are assessed via simulation results
and complemented by a thorough analysis with Monte Carlo
simulations, which provide a comparison between the root mean
square error (RMSE) of each of the three filters, and these with
the Bayesian Crámer-Rao bound (BCRB). In the second case,
position, velocity, and bias estimates are obtained. The chosen
approach is to secure preliminary results through the use of
the EKF, for which the performance is assessed via simulation
results. The solution analysis is complemented with Monte Carlo
simulations, which are carried out in order to compare the RMSE
performance with the BCRB.

Index Terms—underwater navigation; autonomous underwater
vehicles; pseudo-range measurement; Kalman filter; augmented
system

I. INTRODUCTION

The use of AUVs has been increasing in recent years, with
major applications in industrial, military [1], and research
fields. Some notable missions are the mapping of the seafloor
[2]; wreckage search for missing aircrafts [3] or ships; research
applications, from the study of the ecosystems to the study of
the evolution and predicted progressions of these bodies of
water.

The question of localization of such vehicles is relevant
whether for geo-referencing or control purposes. Traditional
localization systems, such as the global positioning system
(GPS), are not available in an underwater scenario due to
the strong attenuation of the electromagnetic waves. Instead,
a common choice is the use of acoustic transponders.

The three major categories of underwater acoustic position-
ing systems are the long baseline (LBL) [4], the short baseline
(SBL) [5], and the ultra-short baseline (USBL) [6]–[8]. The
USBL has smaller cost constraints but it also presents a lower
accuracy. The LBL and SBL require a higher investment
in equipment, since they involve the use of more acoustic
transponders, as well as clock-synchronization software. The
study of alternative localization methods, which can provide
high accuracy in performance, while also maintaining a lower
cost of production is, hence, imperative for the continued
development of these types of missions.

In [9], the concept of a synthetic LBL (SLBL) is brought
up. A single acoustic source is used, which is combined with
a high performance dead-reckoning system to allow for the
application of standard trilateration techniques. A similar idea
is used in [10] with the definition of the virtual LBL (VLBL).

The EKF is a very widespread method used for solution
estimation, namely in [11], [12]. In [13], conclusions are
drawn about the boundedness of the estimation error of a
discrete-time EKF, applied to a stochastic framework. These
require specific conditions, including a sufficiently small initial
error and sufficiently small noise, which are heavy constraints
for navigation systems. For this reason, other approaches
which provide global asymptotic stability are important in
order to guarantee a more robust solution.

Some notable research on single range measurement posi-
tioning systems has been performed, namely in [14], where
preliminary experimental results with single beacon acoustic
navigation are presented. In [15], the problems of single range
navigation and source localization are addressed. A solution
based on an augmented state transforms the original nonlinear
system into a linear time-varying (LTV) system, which enables
the design of a LKF giving globally exponentially stable (GES)
error dynamics. In [16], the observability of single range
navigation is addressed, as well as some robustness issues.

The clock synchronization needed in a OWTT setting can be
achieved prior to each mission via the appropriate calibrations.
However, this is not only an added burden, but is also insuf-
ficient for long missions, since clock drift is inevitable unless
clock synchronization is performed often. For this reason,
solutions that can explicitly account for the bias term added
by the clock offset, as in [17], are of great interest.

In [18], the author addresses both the single source and the
clock offset concerns, previously mentioned in [15] and [17],
respectively. Their combination yields estimations based on
single pseudo-ranges. The solution presented includes deriving
an augmented state, for which the system dynamics become
linear and allow for the use of the LKF. This expands the
previously obtained advantages, by solving both issues, while
also obtaining GES guarantees. One of the main contributions
of this paper is to expand upon the work in [18], by providing
an extensive performance comparison between the proposed
solution and other existing estimators, namely the EKF and
the UKF. This is done through simulation results, along with
Monte Carlo runs, including a comparison with the BCRB.

A. Notation

Throughout this paper, scalars, vectors, and matrices are
represented by a lowercase letter, a bold lowercase letter,
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and a bold uppercase letter, respectively. In denotes the
n×n identity matrix. When matrix dimensions are omitted,
the matrices are assumed to be of proper dimensions. A
block diagonal matrix is represented by diag(A1,...,An).
For x∈R3, xx, xy and xz represent the x, y and z axis
components of x, respectively. The transpose operator is
denoted by (.)T . The Special Orthogonal Group is denoted
by SO(3)={X∈R3×3 :XXT =XTX=I3∧det(X)=1}.

II. PROBLEM STATEMENT

Consider an acoustic positioning system for an underwater
vehicle, consisting of a fixed emitting source. The agent is
equipped with an acoustic receiver and is assumed to have
access to the inertial position of the emitter, which is constant.
A OWTT setting is considered, with no guarantee of clock
synchronization between source and agent. This time offset re-
sults in a bias term in the range measurements, which are, then,
pseudo-range measurements, obtained with sampling period T .
The vehicle is equipped with an attitude and heading reference
system (AHRS) and a Doppler velocity log (DVL), to obtain
the necessary additional information about its movement.

Due to the associated sampling rates, the nonlinear system
dynamics derived in the following sections are considered in
a continuous-discrete framework and then discretized. This
makes the pseudo-range measurements, obtained at low update
rates, drive the estimation error to zero, while the other
sensors, which operate at a higher rate, are used to drive the
system dynamics.

Let {I} denote the local inertial coordinate reference frame
and {B} denote the coordinate frame attached to the vehicle,
usually referred to as the body-fixed reference frame. Consid-
ering p(t)∈R3 as the inertial position of the vehicle, v(t)∈R3

as the velocity of the vehicle relative to {I}, expressed
in body-fixed coordinates, and R(t)∈SO(3) as the rotation
matrix from {B} to {I}, given by the AHRS, the linear motion
of the vehicle is, then, described by

ṗ(t)=R(t)v(t). (1)

In this work, two scenarios will be considered: one in which
it is assumed that the bottom-lock condition is verified, and so,
the inertial velocity values are directly available to the vehicle,
and one which corresponds to the absence of bottom-lock,
where only the velocity of the vehicle relative to the fluid is
available. The inertial position of the source, which is assumed
to be fixed, is denoted by s∈R3. Let bc(tk) be the bias term
that accounts for the effect of the unknown clock offset. The
pseudo-range measurements available to the vehicle are then
given by

r(k)=‖s−p(tk)‖+bc(tk), (2)

with tk=t0+kT,k∈N, where T>0 is the sampling period and
t0 is the initial time.
Assumption 1. All the pseudo-range measurements are posi-
tive, i.e., r(k)>0 for all k.
Remark 1. The condition in Assumption 1 is a mild one.
Indeed, if the vehicle were to receive a signal in which the
time tag was greater than its own clock, it would know that

its clock is behind and could adjust its value to a higher one,
so that the pseudo-range measurement is positive.
Assumption 2. The offset of the clocks is constant, i.e.,
ḃc(t)=0.
Remark 2. The presented solutions are designed to be noise
controllable, i.e. the noise covariance matrices do not have
zero diagonal values. This means that, even though the bias
term is assumed constant, in nominal terms, it is possible to
track slow time-varying quantities.

A. System dynamics with bottom-lock

Considering the scenario in which bottom-lock can be
guaranteed, i.e., the vehicle has direct access to the inertial
velocity values, the system can be described by a continuous
nonlinear system with discrete-time output, which is obtained
by combining the previous assumptions with (1) and (2),
giving 

ṗ(t)=R(t)v(t)

ḃc(t)=0

r(k)=‖s−p(tk)‖+bc(tk)
. (3)

By discretizing system (3), the discrete-time system dynamics
can be described by

p(tk+1)=p(tk)+

∫ tk+1

tk

R(τ)v(τ)dτ

bc(tk+1)=bc(tk)

r(k)=‖s−p(tk)‖+bc(tk)

. (4)

Using the system described in (4) and defining the discrete-
time states {

x1(k)=p(tk)

x2(k)=bc(tk)
,

one can write {
x1(k+1)=x1(k)+u(k)

x2(k+1)=x2(k)
,

with u(k)=

∫ tk+1

tk

R(τ)v(τ)dτ . From here, it is possible to

rewrite the system dynamics as{
x(k+1)=Ax(k)+Bu(k)

r(k)=‖s−x1(k)‖+x2(k)
, (5)

where r(k) are the pseudo-range measurements available to
the vehicle. The state and input matrices, respectively A=I4
and B=diag(I3,0), are constant over time.

B. System dynamics without bottom-lock

In the absence of bottom-lock, the DVL provides only
the velocity of the vehicle relative to the velocity of its
surrounding fluid. In (1), v(t) is, thus, the sum of its two
components. Let vf (t)∈R3 denote the velocity of the fluid in
inertial coordinates and vr(t)∈R3 denote the velocity of the
vehicle relative to the fluid in body-fixed coordinates. Hence,

v(t)=RT (t)vf (t)+vr(t). (6)
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Assumption 3. The inertial fluid velocity is constant, i.e.,
v̇f (t)=03×1.
Remark 3. Once again, using the argument of noise
controllability, this restriction can be loosened and it is
possible to track slow time-varying quantities.

With all three assumptions and combining (1), (2), and
(6) gives the continuous non-linear system with discrete-time
output 

ṗ(t)=vf (t)+R(t)vr(t)

v̇f (t)=0

ḃc(t)=0

r(k)=‖s−p(tk)‖+bc(tk)

. (7)

By discretizing system (7), the discrete-time system dynam-
ics can be described by

p(tk+1)=p(tk)+Tvf (tk)+

∫ tk+1

tk

R(τ)vr(τ)dτ

vf (tk+1)=vf (tk)

bc(tk+1)=bc(tk)

r(k)=‖s−p(tk)‖+bc(tk)

. (8)

Using the system described in (8) and defining the discrete-
time states 

x1(k)=p(tk)

x2(k)=vf (tk)

x3(k)=bc(tk)

,

one can write
x1(k+1)=x1(k)+Tx2(k)+u(k)

x2(k+1)=x2(k)

x3(k+1)=x3(k)

,

with u(k)=

∫ tk+1

tk

R(τ)vr(τ)dτ . From here, it is possible to

rewrite the system dynamics as{
x(k+1)=Ax(k)+Bu(k)

r(k)=‖s−x1(k)‖+x3(k)
, (9)

where r(k) are the pseudo-range measurements available to
the vehicle. The state and input matrices, respectively A and
B, are constant over time, as given by

A=



1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


and B=



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0


. (10)

III. SIMULATION RESULTS

In the simulations, the vehicle describes the trajectory de-
picted in Fig. 1. Its initial position is p=

[
1 1 1

]
[m], whereas

the constant bias value is bc=2m. The fixed position of the
source is s=

[
1 1 3

]
[m].
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Fig. 1: Trajectory described by the vehicle.

A. Simulation results for system with bottom-lock

The problem of estimator design for (5) is approached by
designing an EKF, an UKF, and a LKF with state augmen-
tation. The state augmentation follows the one introduced in
[18], where the author takes advantage of the fact that the
only nonlinearity in this problem comes from the system range
measurements. Because these values are measured at each
timestamp, and hence, are accessible to the state, it is possible
to define 

z1(k)=x1(k)

z2(k)=x2(k)

z3(k)=r(k)

,

where r(k)=‖x1(k)‖+x2(k), which yields the new state

vector z(k)=
[
zT1 (k) z2(k) z3(k)

]T
. Noticing that

z1(k+1)=z1(k)+u(k)

z2(k+1)=z2(k)

z3(k+1)=‖z1(k+1)‖+z2(k+1)

one can arrive at the new state-space formulation{
z(k+1)=A(k)z(k)+B(k)u(k)

y(k+1)=Cz(k+1)
. (11)

The new state, input, and output matrices are given by

A(k)=


I3 03×1 03×1

01×3 1 0

2
u(k)T

r(k+1)
2
[r(k+1)−r(k)]

r(k+1)

r(k)

r(k+1)

∈R5×5,

B(k)=


I3

01×3

u(k)T

r(k+1)

∈R5×3,

and C=
[
01×3 0 1

]
∈R1×5, respectively. The input is still

u(k)=
∫ tk+1

tk
R(τ)vr(τ)dτ . The new system can be regarded

as a discrete-time linear time-varying for observer design
purposes. Since the augmented system is equivalent to the
system in (5), an observer (filter) for (11) is also an observer
(filter) for (5).
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The proposed observers are simulated considering sensor
noise for all sensors. The pseudo-range measurements are
assumed to be subjected to additive zero-mean Gaussian
noise with standard deviation 0.1m, whereas the process
noise is considered to be additive zero-mean Gaussian noise
with standard deviation 1cm. To evaluate the robustness of
the solutions, a non-zero initial error is considered. The
EKF and the UKF are initialized with P(0)=I4 and x(0)=[
−4 −4 −4 1

]T
[m], whereas the LKF is initialized with

P(0)=I5 and z(0)=
[
−4 −4 −4 1 r(0)

]T
[m] due to the

augmented state.
The initial convergence of the position estimation error is

depicted in Figures 2, 3, and 4, respectively for the EKF,
the UKF, and the LKF. The initial convergence of the bias
estimation error for each filter is presented in Fig. 5. One
can immediately see an underperformance of the UKF, as
it presents the highest convergence time. The LKF clearly
presents the fastest convergence, as well as the smallest initial
transients.
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Fig. 2: EKF initial convergence of the position estimation
errors.
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Fig. 3: UKF initial convergence of the position estimation
errors.

Because the three components of the position show similar
behaviours, the detailed evolution of the position px estimation
error is shown in Fig. 6 and is considered representative of all
components. The detailed evolution of the bias estimation error
is presented in Fig. 7. Both evolutions seem to indicate similar
steady-state estimation errors for all filters.

1) Filter failure of convergence: Since neither the EKF nor
the UKF provide convergence guarantees, an example of a set
of initial conditions for which the filters do not converge is
presented. For the EKF, a simulation is run with P(0)=I4 and
z(0)=

[
−999 −699 −999 −498

]T
[m]. Figures 8 and 9 show
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Fig. 4: LKF initial convergence of the position estimation
errors.
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Fig. 5: Initial convergence of the bias estimation error.
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Fig. 6: Detailed evolution of the position px estimation error.
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Fig. 7: Detailed evolution of the bias estimation error.

the obtained position and bias estimation errors, respectively.
These prove that the filter does not converge under these
conditions.

The LKF is run with equivalent conditions, i.e., with P(0)=

I5 and x(0)=
[
−999 −699 −999 −498 r(0)

]T
[m]. Figures

10 and 11 show the initial convergence and steady-state results
obtained for the position estimation error and bias estimation
error, respectively. These results illustrate the benefits of using
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the solution proposed in [18], since it provides GES, which
means it will converge even when equivalent filters do not.
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Fig. 8: EKF failure of convergence: position error.
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Fig. 9: EKF failure of convergence: bias error.
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Fig. 10: LKF convergence for an initial condition that leads
to failure of the EKF: position error.
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Fig. 11: LKF convergence for an initial condition that leads
to failure of the EKF: bias error.

For the UKF, a simulation is run with P(0)=I4 and
x(0)=

[
−24 −14 −24 −2

]T
[m]. Figures 12 and 13 show

the obtained position and bias estimation errors, respectively.
These prove that the filter does not converge under these
conditions. Notice that the necessary offset needed for UKF

failure of convergence is much smaller than the one used in
the equivalent EKF experiment.

The LKF is run with equivalent conditions, i.e., with
P(0)=I5 and x(0)=

[
−24 −14 −24 −2 r(0)

]T
[m]. Figures

14 and 15 show the initial convergence and steady-state results
obtained for the position estimation error and bias estimation
error, respectively. These results further support the benefits
of the GES guarantee of this solution.
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Fig. 12: UKF failure of convergence: position error.
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Fig. 13: UKF failure of convergence: bias error.
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Fig. 14: LKF convergence for an initial condition that leads
to failure of the UKF: position error.

2) Monte Carlo runs for system with bottom-lock: In order
to characterize the performances of the proposed solutions,
the Monte Carlo method is applied. 10000 runs are carried
out for the scenario described in Section III-A. The same
noise covariance matrices are used. The offset added to the
nominal initial conditions in order to obtain the non-zero
initial error is sampled from a zero-mean Gaussian distribution
with covariance matrix P=diag(100I3,25), which is also
the initial covariance matrix of the filters. For the LKF this
becomes P=diag(100I3,25,10

−4).
Table I presents some outcomes of the Monte Carlo simula-

tions. It is clear that the UKF has the longest run time and that
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Fig. 15: LKF convergence for an initial condition that leads
to failure of the UKF: bias error.

the EKF has the lowest final average errors for all variables.
Regarding the LKF it is important to note that the only run
that is not counted as a convergence is not a case of failure
of convergence, but a case in which the final error did not fall
under the established thresholds for convergence.

TABLE I: Monte Carlo outcomes for system with bottom-lock.

Filter
Number of
runs that
converge

Run time
(min)

Final average
position error (cm)

Final average
bias error (m)

EKF 10000 4.55 [−0.022 0.079−0.046]T 8.21×10−4

UKF 8278 17.45 [−1.694.260.67]T 0.023
LKF 9999 6.03 [0.487−0.470−0.632]T −0.016

The initial convergence of the average position estimation
error is depicted in Figures 16, 17, and 18, respectively for
the EKF, UKF, and LKF. Fig. 19 presents the average bias
estimation error for each filter and shows a longer convergence
time and higher peaks for the UKF. Because the three compo-
nents of the position show similar behaviours, only the detailed
evolution of the position px is shown in Fig. 20 without loss
of information. The detailed evolution of the bias is presented
in Fig. 21 and seems to indicate a slight offset in the LKF bias
estimation. These detailed evolutions once again demonstrate
the significantly worse performance of the UKF in comparison
with the other two filters.
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Fig. 16: EKF initial convergence of the average position
estimation errors.

Fig. 22 shows the initial convergence of the RMSE of the
position px, which again is representative of the behaviour
of the remaining components of the position. This shows
the results of all three estimators and allows for a direct
comparison of performance between the filters, and with the
theoretical performance limit, given by the BCRB. Fig 23
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Fig. 17: UKF initial convergence of the average position
estimation errors.
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Fig. 18: LKF initial convergence of the average position
estimation errors.
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Fig. 19: Initial convergence of the average bias estimation
error.
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Fig. 20: Detailed evolution of the average position px
estimation error.

presents the initial convergence of the bias RMSE for all filters
and for the BCRB. One can notice a relatively high peak in
the initial transient of the EKF.

Fig. 24 depicts the detailed evolution of the RMSE of the
position px. One can obtain some further insight regarding
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Fig. 21: Detailed evolution of the average bias estimation
error.

previous experiments by noticing that the UKF presents the
largest difference from the BCRB. The LKF does not seem
to be an optimal estimator for the problem at hand, since
its tracking of the BCRB is not overlapping, although it is
clearly a much better solution than the UKF. The EKF presents
the smallest difference from the BCRB which might, at first
glance, make it seem like the better solution. However, one
should notice the points at which the EKF RMSE falls below
the BCRB line, which seems to indicate a somewhat biased
estimation for this variable.

Fig. 25 presents the detailed evolution of the bias RMSE.
Like for the position, the UKF bias RMSE is clearly the worse
performing of the three solutions. The hypothesis from before
regarding a possible offset in the bias estimation is now clear,
as both the EKF and the LKF fall below the BCRB line. It is
also clear, from Figures 24 and 25, that the EKF is the most
biased of these two estimators.

Table II presents the numerical results obtained for the
average RMSE between 5000 s and 10000 s for each filter, as
well as the average BCRB value in the same interval. These
once again show the poorer results achieved by the UKF and
indicate that the EKF slightly outperforms the LKF in terms
of the steady-state values.

TABLE II: Average RMSE and BCRB values between 5000
s and 10000 s.

px(m) py(m) pz(m) bc(m)

BCRB 0.0678 0.0570 0.0478 0.0421
RMSE EKF 0.0656 0.0551 0.0441 0.0296
RMSE UKF 0.9525 0.9005 0.4022 0.6831
RMSE LKF 0.0742 0.0647 0.0520 0.0483
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Fig. 22: Initial convergence of the position px RMSE.
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Fig. 23: Initial convergence of the bias RMSE.
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Fig. 24: Detailed evolution of the position px RMSE.

9000 9200 9400 9600 9800 10000
0

0.05

0.1

0.15

BCRB EKF UKF LKF

Time(s)

B
ia

s
R

M
SE

(m
)

Fig. 25: Detailed evolution of the bias RMSE.

B. Simulation results for system without bottom-lock

In addition to the initial position, bias, and source posi-
tion values, p(0)=

[
1 1 1

]
[m], bc=2m, and s=

[
1 1 3

]
[m],

respectively, the system now considers a velocity. vf (t) is
considered, for simulation purposes, to simply be the com-
pensation of the fluid velocity, so that the described trajectory
is still the one depicted in Fig. 1. This constant velocity is
given by vf (t)=[0.10.10.1]T [m/s].

The proposed solution is simulated considering sensor noise
for all sensors. The pseudo-range measurements are assumed
to be subjected to additive zero-mean Gaussian noise with
standard deviation 1cm, whereas the process noise is consid-
ered to be additive zero-mean Gaussian noise with covariance
matrix Q=diag(10−4I3,10

−6I4). To evaluate the robustness
of the solutions, a non-zero initial error is considered. The
EKF is initialized with P(0)=I7 and x1(0)=

[
0 0 0

]T
[m],

x2(0)=
[
0.03 0.03 0.03

]T
[m/s], and x3=1.7m.

The initial convergence of the estimation errors for this
filter is depicted in Figures 26, 27, and 28, respectively for
the position, velocity, and bias errors. The detailed evolution
of these errors in shown in Figures 29, 30, and 31, in the
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same order. These show a much slower convergence than
its equivalent experiment with bottom-lock, which is to be
expected due to the increased difficulty of an already hard
problem. Even though Fig. 31 shows an offset in the final bias
estimation error, all detailed evolutions show the estimation
errors growing closer to zero for larger time-stamps, with very
satisfactory steady-state errors, considering the scale of the
problem.
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Fig. 26: EKF without bottom-lock initial convergence of the
position estimation errors.
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Fig. 27: EKF without bottom-lock initial convergence of the
velocity estimation errors.
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Fig. 28: EKF without bottom-lock initial convergence of the
bias estimation error.

1) Filter failure of convergence: Even though satisfac-
tory results are achieved, this is only a primary approach
to this problem and future work should be performed in
order to provide a solution with asymptotic stability. A set
of initial estimates for which the designed filter does not
converge is given by x1(0)=

[
−4999 −3999 −4999

]T
[m],

x2(0)=
[
−1.9 −0.9 −1.9

]T
[m/s], and x3(0)=−4498m. Fig-

ures 32, 33, and 34 depict the obtained results for the position,
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Fig. 29: EKF without bottom-lock detailed evolution of the
position px estimation error.
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Fig. 30: EKF without bottom-lock detailed evolution of the

velocity vx estimation error.
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Fig. 31: EKF without bottom-lock detailed evolution of the
bias estimation error.

velocity, and bias errors, respectively. All three plots clearly
show a failure of convergence of the designed filter.
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Fig. 32: Example of failure of convergence of the EKF
without bottom-lock: position error.
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Fig. 33: Example of failure of convergence of the EKF
without bottom-lock: velocity error.
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Fig. 34: Example of failure of convergence of the EKF
without bottom-lock: bias error.

2) Monte Carlo runs for system without bottom-lock:
In order to characterize the performances of the proposed
solutions, the Monte Carlo method is applied. 10000 runs are
carried out for the scenario described in Section III-B. The
same noise covariance matrices are used. The offset added to
the nominal initial conditions in order to obtain the non-zero
initial error is sampled from a zero-mean Gaussian distribution
with covariance matrix P=diag(100I3,0.01I3,25), which is
also the initial covariance matrix of the filter.

Once again, without loss of information, px is chosen to
represent all three position components and vx represents the
velocity components. The average estimation errors for the
EKF without bottom-lock are depicted in Figures 35, 36,
and 37, respectively for position px, velocity vx, and the
bias. These show longer convergence times when compared
to the equivalent figures for the EKF with bottom-lock. The
bias achieves the same order of magnitude shown in Fig. 21,
however the position presents a much higher average error.
Taking into account the increased difficulty of this estimation,
as well as the scale of the problem, one can still attest to the
good performance of the filter.

Since this type of filter tends to overestimate its perfor-
mance, it is interesting to compare its perception with the
actual results. For this reason, the RMSE is compared against
the BCRB, like before, but also against the standard deviation
obtained from the filter. This is done by taking the square
root of the diagonal entries of the covariance matrix P. The
RMSE of the position px is depicted in Fig. 38 and shows
some indication that the filter might become biased for longer
experiments, since its internal perception consistently falls
below the BCRB line. The RMSE of velocity vx is presented
in Fig. 39. The bias RMSE is depicted in Fig. 40. All three
figures show a RMSE that is considerably above the BCRB
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Fig. 35: EKF without bottom-lock average position
estimation error.

0 2000 4000 6000
−0.2

−0.1

0

0.1

0.2

7000 8000 9000 10000
−4

−2

0

2

4
·10−2

vx error vy error vz error

Time(s)A
ve

ra
ge

ve
lo

ci
ty

er
ro

r
(m

/s
)

Fig. 36: EKF without bottom-lock average velocity
estimation error.
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Fig. 37: EKF without bottom-lock average bias estimation
error.

which justifies the higher difficulty in convergence previously
mentioned.

0 3000 6000 9000
0

5

10

15

9500 10000
0

1

2

3

4

BCRB RMSE EKFstd

Time(s)

Po
si

tio
n
p
x

R
M

SE
(m

)

Fig. 38: EKF without bottom-lock position px RMSE.
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Fig. 39: EKF without bottom-lock velocity vx RMSE.
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Fig. 40: EKF without bottom-lock bias RMSE.

IV. CONCLUSIONS AND FUTURE WORK

The work developed in this paper addressed two problems of
localization based on single pseudo-range measurements. For
the system with bottom-lock, the three position components,
as well as the bias associated with the clock offset, were
successfully estimated. The three proposed solutions for this
problem were compared, via simulation results, under the same
conditions. A thorough Monte Carlo analysis was performed,
for which the RMSE and average error of the solutions were
computed and compared. Initial conditions for which the EKF
and the UKF do not converge were shown. Equivalent simula-
tions were performed with the LKF, which proved to converge
in both cases due to its GES guarantee. Overall, the UKF is
clearly the worst performing filter for this estimation, with
worse obtained estimates, slowest convergence and highest run
time. Because the EKF and LKF present comparable results,
as well as computational costs, and since the LKF shows a
much faster convergence, although a slightly higher steady-
state error than the EKF, the global convergence guarantee
of the LKF forces the conclusion that the LKF is the best
estimator solution out of the ones analysed.

For the system without bottom-lock, only an introductory
approach was taken, with the design and testing of an EKF.
The three position components, the three velocity components,
and the bias associated with the clock offset were successfully
estimated. This filter presented a much longer convergence
time when compared with the version with bottom-lock, which
is to be expected considering the increased difficulty of the
problem. The resulting steady-state errors were also higher
than before, as well as the difference between the obtained
RMSE and the BCRB for this system. However, because the
results are still deemed satisfactory, and a convergence within
the set thresholds is obtained for most Monte Carlo runs, this

is still a good estimator.
Future work can be done for the system without bottom-lock

by taking a similar approach and designing a LKF by further
augmenting the state. The same analysis performed in this
work for the system with bottom-lock should be carried out for
the system without bottom-lock, by performing an extensive
comparison between the EKF and LKF. A comparison with
the UKF could also be attempted, although, given the results
obtained in this paper, it is unlikely that this filter will
converge. For both cases, the final step would be to test the
application of the designed filter solutions in field experiments.
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